A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows
نویسندگان
چکیده
In 2002, Després and Lagoutière [Després and Lagoutière (2002)] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [Kokh and Lagoutière (2010)] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantage of the present interface capturing solver is its natural implementation on parallel processors or computers. In particular, we are confident on its implementation on Graphics Processing Units (GPU) with high speedups.
منابع مشابه
Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملRandom sampling remap for compressible two-phase flows
In this paper we address the problem of solving accurately gas-liquid compressible flows without pressure oscillations at the gas-liquid interface. We introduce a new Lagrange-projection scheme based on a random sampling technique introduced by Chalons and Goatin in [CG07]. We compare it to a ghost fluid approach introduced in [WLK06, MBKKH09] which is based on the ghost fluid method for the po...
متن کاملNumerical Simulation of Free Surface Flows and Comparison of Symmetry and Real Boundary Conditions at the Free Surface
For implementation of the free surface boundary condition, a new subroutine has been introduced to an existing steady 3-D body fitted code. This code was previously written for steady flow simulation in closed ducts. The algorithm used in this subroutine reduces the instability problem according to the free surface wave generation. For code validation, it was applied to two different open cha...
متن کاملNumerical Simulation of Free Surface Flows and Comparison of Symmetry and Real Boundary Conditions at the Free Surface
For implementation
 of the free surface boundary condition, a new subroutine has been introduced to an existing steady 3-D body fitted code. This code was previously written for steady flow simulation in closed ducts. The algorithm used in this subroutine reduces the instability problem according to the free surface wave generation. For code validation, it was applied to two different open c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 274 شماره
صفحات -
تاریخ انتشار 2014